
Second case study: 
Network Creation Games 

(a.k.a. Local  
Connection Games) 



Introduction 

 Introduced in [FLMPS,PODC’03] 
 A Local Connection Game (LCG) is a game 

that models the ex-novo creation of a 
network 

 Players are nodes that:  
 Incur a cost for the (adjacent) links they 

personally activate; 
 Benefit from having the other nodes on the 

network as close as possible, in terms of length of 
shortest paths on the created network (notice 
they can use all the activated edges) 

[FLMPS,PODC’03]:  
A. Fabrikant, A. Luthra, E. Maneva, C.H. Papadimitriou, S. Shenker, 

On a network creation game, PODC’03 



The formal model 

 n players: nodes V={1,…,n} in a graph to be built 

 Strategy for player u: a set of incident edges (intuitively, 
a player buys these edges, that will be then used 
bidirectionally by everybody; however, only the owner of 
an edge can remove it, in case he decides to change his 
strategy) 

 Given a strategy vector S=(s1,…, sn), the constructed 
network will be the undirected graph G(S)  

 player u’s goal:  
 to spend as little as possible for buying edges (building cost) 

 to make the distance to other nodes as small as possible (usage 
cost) 



The model 

 Each edge has a real-value cost ≥0 

 distG(S)(u,v): length of a shortest path (in 
terms of number of edges) in G(S) between 
u and v 

 nu: number of edges bought by node u 

 Player u aims to minimize its cost: 

 

 

 

costu(S) = nu + vV distG(S)(u,v) 



Cost of a player: an example 

 

Convention: arrow from the node buying the link 
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Notice that if <4 this is an improving move for u 



The social-choice function 

 To evaluate the overall quality of a 
network, once again we consider the 
utilitarian social cost, i.e., the sum of all 
players’ costs. Observe that:  

1. In G(S) each term distG(S)(u,v) contributes to 
the overall cost twice 

2. Each edge (u,v) is bough at most by one player 
 
 
 
Social cost of a network G(S)=(V,E):       

SC(G(S))=|E| + u,vV distG(S)(u,v) 



Some (bad) computational 
aspects of LCG 

 LCG are not potential games (differently from GCG); 
this can be shown by providing an instance in which a 
sequence of improving moves will generate a cycle in 
the corresponding space of strategy profiles 

 Computing a best-response move for a player is NP-
hard (differently from GCG) 

 The complexity of establishing the existence of an 
improving move for a player (decision problem) is 
open 

 The complexity of establishing the existence of a 
NE for a given  (decision problem) is open 

 

 



Our goal 

 We use Nash equilibrium (NE) as the solution concept: 
Given a strategy profile S, the formed network G(S)=(V,E) 
is stable (for the given value ) if S is a NE 

 Conversely, given a graph G=(V,E), it is stable if there 
exists a strategy vector S such that G=G(S), and S is a NE 

 Observe that any stable network must be connected, since 
the distance between two nodes is infinite whenever they 
are not connected 

 A network is optimal or socially efficient if it minimizes the 
social cost 

 We aim to characterize the efficiency loss resulting from 
selfishness, by bounding the Price of Stability (PoS) and 
the Price of Anarchy (PoA) 
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Stable networks: an example 
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That’s a stable network! 
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 Set =5, and consider: 



It is NP-hard, given the strategies of the other agents, 
to compute the best response of a given player in a 
LCG. 

Theorem 1 

proof 

Reduction from dominating set problem 



Dominating Set (DS) problem 

 Input:  
 a graph G=(V,E) 

 Solution:  
 UV, such that for 

every vV-U, there 
is uU with (u,v)E 

 Measure:  
 Cardinality of U 



the reduction 

We will show that player i has a strategy yielding a cost 
 k+2n-k if and only if there is a DS of size  k 

G=(V,E) 

player i 

= G(S-i) 

1<<2 

Instance of MDS 

 Instance of LCG 



the reduction 

( ) 
easy: given a dominating set U of size at most k in G, we 
want to show that there exists a strategy for player i 
costing at most k+2n-k; then, let i buy edges incident 
to the nodes in U 
 

G=(V,E) 

player i 

= G(S-i) 

1<<2 

Cost for i is |U|+2n-|U| ≤ (-1) |U| +2n  
which is maximum for |U|=k, since 1<<2  



the reduction 

( ) 
Let Si be a strategy giving to player i a cost  k+2n-k 
 
Modify Si as follows: 
 repeat:  
  if there is a node v with distance ≥3 from x in  
  G(S), then add edge (x,v) to Si (this decreases the 
  cost of player i)  
  
 
 

G=(V,E) 

player i 

= G(S-i) 

1<<2 x 



the reduction 

( ) 
Let Si be a strategy giving a cost  k+2n-k 
 
Modify Si as follows: 
 repeat:  
  if there is a node v such with distance ≥3 from x in 
  G(S), then add edge (x,v) to Si (this decreases the 
  cost of player i)  
 Finally, every node has distance either 1 or 2 from x 
  
 

G=(V,E) 

player i 

= G(S-i) 

1<<2 x 



the reduction 

( ) 
Let Si be a strategy giving a cost  k+2n-k 
 
Modify Si as follows: 
 repeat:  
  if there is a node v such with distance ≥3 from x in 
  G(S), then add edge (x,v) to Si (this decreases the 
  cost)  
 Finally, every node has distance either 1 or 2 from x 
  
 Let U be the set of nodes at distance 1 from x… 
 

G=(V,E) 

player i 

= G(S-i) 

1<<2 x 



the reduction 

G=(V,E) 

player i 

= G(S-i) 

1<<2 x 

( ) 
 
…it is easy to see that U is a dominating set of the original graph G 
 
We have costi(S)= |U|+2n-|U|  k+2n-k 
 

(-1)|U|  (-1)k and since >1  
|U|  k 



How does an optimal  
network look like? 



Some notation 

Kn: complete graph  
with n nodes 

A star is a tree  
with height at most 1 
(when rooted at its 

center) 



Il ≤2 then the complete graph is an optimal solution,  
while if ≥2 then the star is an optimal solution. 

Lemma 1 

proof 
Let G=(V,E) be an optimal solution;     |E|=m and SC(G)=OPT 

LB(m) 
OPT = |E| + u,vV distG(u,v) ≥ m + 2m   +   2(n(n-1) -2m) 

Notice: LB(m) is equal to SC(Kn) when m=n(n-1)/2, and to 
SC(star) when m=n-1; indeed: 
 

SC(Kn) =  n(n-1)/2 + n(n-1) 
SC(star) =  (n-1) + 2(n-1) + 2(n-1)(n-2) =  (n-1) + 2(n-1)2 

 

and it is easy to see that they correspond to LB(n(n-
1)/2) and to LB(n-1), respectively. 
 

=(-2)m + 2n(n-1) adjacent nodes 
at distance 1 

non-adjacent pairs of  
nodes at distance ≥ 2 



Proof (continued) G=(V,E): optimal solution;      
|E|=m and SC(G)=OPT 

LB(n-1)  = SC(star) 

OPT≥ LB(m) ≥ 

LB(m)=(-2)m + 2n(n-1) 

LB(n(n-1)/2) = SC(Kn) 

≤2  -2≤0 and so the cheapest network is 
obtained when m is large, i.e., for complete graphs 

≥2  -2≥0 and so the cheapest network is 
obtained when m is small, i.e., for m=n-1 



Are complete graphs 
and stars stable? 



Il ≤1 the complete graph is stable, while if ≥1 then  
the star is stable. 

Lemma 2 

Proof: 

≤1 

By definition, we have to find a 
NE S inducing a clique. Actually, 
any arbitrary strategy profile S 
inducing a clique is a NE. 
Indeed, if a node removes any 
k≥1 owned edges, it saves k in 
the building cost, but it pays 
k≥k more in the usage cost 
(the k detached nodes are now 
at distance 2)     



Proof (continued) ≥1 

c 
Center c cannot change its strategy, otherwise 
its cost increase to infinity 

If a leaf v not buying edges buys any 1≤k≤n-2 edges it 
pays k more in the building cost, but it saves only 
k≤k in the usage cost 

v u 

For a leaf u buying an edge, its cost is +1+2(n-2) and we have two cases: 
Case 1: u maintains (u,c) and buys any 1≤k≤n-2 additional edges; this case 
is similar to the previous one. 
Case 2: u removes (u,c) and buys any 1≤k≤n-2 edges; thus, it pays k in the 
building cost, and its usage cost becomes k+2+3(n-k-2), and so its total 
cost becomes: 
 

 k+k +2+3n-3k-6 = +[(k-1)-2k+n] +2(n-2) ≥  
+[k-1-2k+n]+2(n-2) = +[n-k-1]+2(n-2) 

which is at least equal to the initial cost of +1+2(n-2), since the quantity 
in square brackets is at least 1, being 1≤k≤n-2. 

distance to c distance to  
other nodes 

distance to  
adjacent  nodes 

By definition, we have to find a NE S inducing a star. 
Actually, any arbitrary strategy profile S inducing a 
star is a NE. Indeed: 



For ≤1 and ≥2 the PoS is 1. For 1<<2 the PoS is at  
most 4/3 

Theorem 2 

Proof: From Lemma 1 and 2, for ≤1 (respectively, ≥2) a 
complete graph (respectively, a star) is both optimal and 
stable, and so the claim follows. 
 Kn is an optimal solution (Lemma 1), and a star T is 

stable (Lemma 2); then 
1<<2 

PoS ≤  SC(T) 

SC(Kn) 
= 

     (n-1) + 2(n-1)2 

 n(n-1)/2 + n(n-1) 
< 

2n(n-1) 

 n(n-1)/2 + n(n-1) 

< 2(n-1) for 1<<2 

> n(n-1)/2+n(n-1) for 1<<2 

= 4/3 



What about the  
Price of Anarchy? 

…for <1 the complete graph is the  
only stable network, 

(try to prove that formally)  
hence PoA=1… 

 
…for larger value of ? 



State-of-the-art 

Many of these results are quite 
technical; we will show a 

simpler bound, namely that 
PoA=O(√) 



Some more notation 

The diameter of a graph G  
is the maximum distance  
between any two nodes  

diam=2 

diam=1 

diam=4 



Some more notation 

An edge e is a cut edge (a.k.a. 
bridge) of a graph G=(V,E) if 

G-e is disconnected  

G-e=(V,E\{e}) 

A simple property: 
Any graph has at most n-1 cut  

edges (indeed, if we take any spanning tree T of G, all 
the non-tree edges cannot be bridges, and T has exactly 

n-1 edges (not all of them are bridges, clearly)) 



The PoA of the LCG is at most 6 + 3. 

Theorem 3 

proof 

It follows from the following lemmas: 

The diameter of any stable network is at most 2 +1 . 

Lemma 3 

The SC of any stable network with diameter d is at most 
3d times the optimum SC. 

Lemma 4 



proof of Lemma 3 

Consider a shortest path in G between two nodes u and v 
G: stable network 

u v 

2k≤ distG(u,v) ≤ 2k+1 
for some k 

k vertices reduce 
their distance 

from u 

from ≥2k to 1          ≥ 2k-1 

from ≥2k-1 to 2       ≥ 2k-3 

from ≥ k+1 to k        ≥ 1 

● 
● 

● 

(2i+1)=k2 

i=0 

k-1 

…since G is stable: 

≥k2 k ≤  

distG(u,v) ≤ 2  + 1 



Let G be a network with diameter d, and let e=(u,v) be a 
non-cut edge. Then in G-e, every node w increases its  
distance from u by at most 2d 

Proposition 1 

Let G be a stable network, and let F be the set of  
non-cut edges bought by a node u. Then |F|≤(n-1)2d/ 

Proposition 2 

To prove Lemma 4 we will make use of 
the following: 



Let G be a network with diameter d, and let e=(u,v) be a 
non-cut edge. Then in G-e, every node w increases its  
distance from u by at most 2d 

Proposition 1 

proof 
u 

v 
e 

BFS tree  
from u 

w 



Let G be a network with diameter d, and let e=(u,v) be a 
non-cut edge. Then in G-e, every node w increases its  
distance from u by at most 2d 

Proposition 1 

proof 
u 

v 
e 

BFS tree  
from u 

x y 
w 

(x,y):  
any edge crossing 
the cut induced  

by the removal of e 



Let G be a network with diameter d, and let e=(u,v) be a 
non-cut edge. Then in G-e, every node w increases its  
distance from u by at most 2d 

Proposition 1 

proof 
u 

v 
e 

BFS tree  
from u 

x y 
w 

(x,y):  
any edge crossing 
the cut induced  

by the removal of e 

dG-e(u,w)  dG (u,x) + 1 + dG(y,v)+ dG(v,w)  dG(u,w) +2d  

 d  d = dG(u,w)-1 



Let G be a stable network, and let F be the set of  
non-cut edges bought by a node u. Then |F|≤(n-1)2d/ 

Proposition 2 

proof 
k=|F| 

u 
(part of the) 

BFS tree  
from u 

v1 vi vk ... ... 

n1 ni nk 
nodes nodes nodes 

if u removes  (u,vi) saves  
and its distance cost 

increases by at most 2d ni  
(Prop. 1) 

since G is stable: 
  2d ni  

by summing up for all i 

 2d (n-1)  ni
 

i=1 

k 
k  2d 

k  (n-1) 2d/ 



Lemma 4 
The SC of any stable network G=(V,E) with diameter d is  
at most 3d times the optimum SC. 

proof 

OPT ≥  (n-1) + n(n-1)    [notice this is the building cost of a star 
    and the usage cost of a clique!] 

SC(G)= u,vdG(u,v) +  |E| 

≤dn(n-1) ≤d OPT 

|E|=|Ecut|  +  |Enon-cut| 

≤n(n-1)2d/ 
Prop. 2 

≤(n-1) 

≤(n-1)+n(n-1)2d  ≤ 2d OPT 

≤ d OPT+2d OPT = 3d OPT 


